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Who is this guy?
Neil Eklund, Ph.D., FPHMS
• Principal Scientist, Novity

• Principal Scientist, PARC
• Chief Data Scientist, Schlumberger
• Senior Data Scientist, GE Digital/GE Research

• 20 years of deep technical experience across multiple 
industry segments – Aerospace, Energy, Healthcare, Oil 
& Gas, Financial, and Rail 

• External customers include DARPA, NASA, Lockheed 
Martin, ExxonMobil, and Boeing

• Co-founder of the Prognostics & Health Management 
Society

• Founding Editor-in-Chief, International Journal of 
Prognostics and Health Management (ijPHM)

• 100+ publications, patents, and book chapters
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• Predict failure 30 days in advance
• Structured and unstructured data
• Automated model updating
• $20MM+ annual return

• Predict success of next downhole 
run

• Data transmission to the cloud
• First deployed deep learning 

application for downhole tools
• $10MM+ annual return

• Multiobjective optimization of power plant 
• Meet load constraint, maximize efficiency, 

minimize pollution
• Automated learning as the plant operates
• $14MM+ annual return per 400MW plant

Deployed Applications

• Defense Advanced Research Projects 
Agency (DARPA) project

• Fusion of data types (vibration, chips)
• Zero false alarms
• 5x increase in critical engine bearing spall 

detection capability

• Fault detection for GEnx and GE90 
aircraft engines

• First deployed analytics application 
on GE Predix platform

• $10MM+ annual return

Drilling

Surface 
Equipment

Production

• Predict failures a week in advance
• Wellsite data transmission to the 

cloud
• Automated model updating
• $50MM+ annual return

Power Plant 
Optimization & 

Control

Military 
Aviation

Commercial 
Aviation



Overview



Summary
• Prognostics and Health Management (PHM) deals with a lot of binary 

questions, like “normal or anomalous?” or “faulty or not faulty?”
• PHM data is – virtually by definition – wildly imbalanced
• Binary machine learning models are commonly evaluated using Receiver 

Operating Characteristics (ROC) plots
• ROC plots yield a deceptive impression of performance for imbalanced data 

sets
• We should instead use Precision/Recall (PRC) plots to assess model 

performance



Outline
• Historical Context: From Electromagnetism to Signal Detection Theory
• Inherent Properties of PHM Problems
• A Close Look at ROC and Precision-Recall Curves



What is an ROC curve? 
• A binary classifier produces output between a 

minimum and maximum value. 
• When you pick a classification threshold, cases 

>= threshold are classified as “positive”; cases < 
threshold are “negative”.

• The “accuracy” statistic referrers to 
performance a particular classification 
threshold. 

• A confusion matrix is also calculated for a 
particular threshold. 

• However, if you scan over the range of possible 
threshold values (from min to max), you can –
among other things – calculate the tradeoff 
between true positives and false alarms. 

Confusion Matrix

https://en.wikipedia.org/wiki/Confusion_matrix



What is an ROC curve?
Confusion Matrix

https://en.wikipedia.org/wiki/Receiver_operating_characteristic#/media/File:Roc_curve.svg



What is an ROC curve? 
• The AUC statistic is a measure 

of “area under the curve”
• Maximum of 1.0, minimum of 

0.5
• In general, higher AUCs are 

superior to lower AUCs
• e.g.,

• AUC = 0.89
• AUC = 0.73
• AUC = 0.57

https://en.wikipedia.org/wiki/Receiver_operating_characteristic#/media/File:Roc_curve.svg



Historical Context:
From Electromagnetism to 

Signal Detection Theory



1864 – Maxwell Proposes Electromagnetism

The agreement of the 
results seems to show that 
light and magnetism are 
affections of the same 
substance, and that light is 
an electromagnetic 
disturbance propagated 
through the field according 
to electromagnetic laws

Presenter Notes
Presentation Notes
James Clerk Maxwell



1887 – Hertz Generates and Detects Radio Waves

https://en.wikipedia.org/wiki/Heinrich_Hertz

Presenter Notes
Presentation Notes
Heinrich Hertz. Helmholtz was his advisor, egged him on. 



1887 – Hertz Produces and Detects Radio Waves
Although Hertz did not understand the practical implications,

“It's of no use whatsoever… this is just an experiment that
proves Maestro Maxwell was right—we just have these
mysterious electromagnetic waves that we cannot see with the
naked eye. But they are there.”

Asked about the potential applications of his discoveries, Hertz 
replied,

“Nothing, I guess.”



1904 – Christian Hülsmeyer’s Telemobiloskop

The first patented device using radio 
waves for detecting the presence of 
distant objects, with a range of 
~3000m. 

The first public demonstration of 18 
May 1904 at the Hohenzollern 
Bridge, Cologne.  The device was 
used to detect a ship in the Rhine.  

Presenter Notes
Presentation Notes
Tele – mobil - oscope



1922 – Marconi Conceptualizes RADAR

It seems to me that it should be possible to design apparatus by means of which 
a ship could radiate or project a divergent beam of these rays in any desired 
direction, which rays, if coming across a metallic object, such as another 
steamer or ship, would be reflected back to a receiver screened from the local 
transmitter on the sending ship, and thereby immediately reveal the presence 
and bearing of the other ship in fog or thick weather.

Marconi, G. (1922). Radio telegraphy. Journal of the American Institute of Electrical 
Engineers, 41(8), 561-570.



1935 – First Radio Detection and Ranging (RADAR)
The UK military, fearing a German 
death ray, invests in radio for long 
range detection: 
• 1935 commercial shortwave radio 

hardware is used to measure the 
angle and range of aircraft

• 1936 a production version with range 
of ~100 miles

• 1937 first five stations covering 
London

• 1938-1940 Coverage for all of Eastern 
UK by Chain Home system

https://en.wikipedia.org/wiki/Chain_Home#/media/File:Chain_Home_radar_installation_at_Poling,_Sussex,_1945._CH15173.jpg

Presenter Notes
Presentation Notes
Use of pulse is key discovery. Germany, USSR, France also developing RADAR program during this time. 



1936 – Chain Home A-scope
• The original radar display, the A-

scope, shows only the range, not the 
direction, to targets. 

• The returns caused the spot to be 
deflected downward drawing vertical 
lines on the tube, known as a “blip” 
or “pip”. 

• This image shows several blips 
between 15 and 30 miles from the 
station. The large blip on the far left 
is the leftover signal from the radar's 
own transmitter; targets in this area 
could not be seen.

• Operators could use multiple 
antennas to determine altitude. 

https://en.wikipedia.org/wiki/Radar_display#/media/File:Chain_Home_screen_shot_-NEDAD.2013.047.058A.jpg



1940 – Plan Position Indicator (PPI)  

Blips marked a, b, c, d, are target 
aircraft; the rest is ground clutter. 

Difficult problem! 

How to characterize the performance 
of different RADAR operators?  

https://www.technologystories.org/dreams-and-visions/



1860 – Fechner invents Psychophysics 
Psychophysics is the scientific study of the relation 
between stimulus and sensation, pioneered by 
Fechner. 

Fechner found that seeing a faint stimulus or 
hearing a faint sound is probabilistic:
• A ‘threshold’ was a statistical fiction, an arbitrary 

point on the continuous increasing function 
relating stimulus intensity to the proportion of 
‘yes’ responses. 

• That function increased from zero with no 
stimulus to 100% with a sufficiently large one.

Presenter Notes
Presentation Notes
FEK-ner. Experiments involving weight differences. 



1940s – Receiver Operating Characteristic (ROC)
An early RADAR console was a prototypical 
detection problem:
• The display was covered with ‘snow,’ 

reflections from atmospheric features, and 
the results of random activity in the vacuum 
tube circuits processing signals passed from 
an antenna. 

• Buried in this visual noise might have been a 
reflection from an aircraft. 

• Noise might mock the signature of an 
aircraft, and noise might mask an important 
signal.

noise



1940s – Receiver Operating Characteristic (ROC)
Researchers built on the work of Fechner to 
characterize the tradeoff between false alarms 
and true detections in a Receiver Operating 
Characteristic (ROC) curve. 

noise



1950s – Signal Detection Theory
After the war, the tight security around 
theoretical work in the field eased off and 
researchers began to published work describing 
ways to analyze faint, noise-contaminated signals. 
• Woodward, P. M. (1953). Probability and 

information theory with applications to 
radar. London: Pergamon Press.



1950s – Signal Detection Theory
First published ROC curve,
Peterson, W., Birdsall, T., Fox, W. (1954). The theory of 

signal detectability, Transactions of the IRE Professional 
Group on Information Theory, 4, 4, pp. 171 - 212.

From the abstract,
• An optimum observer required to give a yes or no 

answer simply chooses an operating level and 
concludes that the receiver input arose from signal plus 
noise only when this level is exceeded by the output of 
his likelihood ratio receiver. Associated with each such 
operating level are conditional probabilities that the 
answer is a false alarm and the conditional probability 
of detection. Graphs of these quantities called receiver 
operating characteristic, or ROC, curves are convenient 
for evaluating a receiver. If the detection problem is 
changed by varying, for example, the signal power, then 
a family of ROC curves is generated. Such things as 
betting curves can easily be obtained from such a 
family.



1960s – Visual Psychophysics 
ROC analysis becomes a core part of 
experimental psychology and psychophysics, e.g., 

Boynton, R. M., & Siegfried, J. B. (1962). 
Psychophysical estimates of on-responses to 
brief light flashes. JOSA, 52(6), 720-721.

Presenter Notes
Presentation Notes
Boynton was a giant in the field of color vision.



1990s – Visual Psychophysics 
Kandel, G., Eklund, N., and Schroeder, J. 

(1992). On the possibility of visually 
significant intraocular 
photoluminescence. Advances in Color 
Vision Technical Digest Series (4). Optical 
Society of America: Washington, DC.

Abstract:
Photoluminescence of the human lens in 
vitro is well documented in the biochemistry 
literature (for a review, see Bloemendal, 
1978 ). This photoluminescence has been 
independently confirmed in our laboratories 
in in vivo human lenses.

Presenter Notes
Presentation Notes
Odd coincidence, my first publication. Also an odd coincidence, Helmholtz discovered the effect I was studying. 



1974 – Early use in Radiology 



1989 – First use in Machine Learning
Spackman, K. A. (1989, January). Signal detection theory: Valuable tools for 

evaluating inductive learning. In Proceedings of the sixth international workshop 
on Machine learning (pp. 160-163). Morgan Kaufmann.

Abstract:
This paper describes the use of signal detection theory as a tool for evaluating 
and comparing concept descriptions learned by inductive inference. We outline 
the use of ROC curves and describe the experience we have had in using these 
concepts for inductive learning using connectionist models, genetic search, and 
symbolic concept acquisition.



Inherent Properties 
of PHM Problems



Inherent Properties of PHM Problems
There are two properties that are central to most asset health 
management applications:

1. Faults are rare
• If faults are common, the asset is poorly designed
• Of necessity, faults are comparatively rare

2. Opportunities to evaluate are numerous
• If an asset is worth developing an asset health management system for, 

then it is likely employed frequently. 

As a result, PHM data are extremely imbalanced. 



Example: Aviation Data
• Air turnback for a Boeing 777 costs ~$75K/ incident in 2022 dollars

• Not to mention 300+ unnerved passengers, and a likely borescope or unscheduled 
engine removal

• Common to average over one cycle/day over life of aircraft

Boeing, “Out of Service Costs”, Airline Fleet & Network Management, Issue 35, January - February, 2005, pg. 41



E xample: Aviation Data
• 12 Engines, 14 faults
• 27 time series w/ alternative engines

• 14 w/ fault occurring at the end (positive cases)
• 13 w/o fault (negative cases)

• 25746 flights total
• ~950 per time series (from 145 to 1731)

• Severely unbalanced – only 14 positive cases, and 25732 negative cases!
• Moreover, would be even more imbalanced if data were sampled uniformly 

from fleet.



Example Classifier Output

Fault



Example Classifier Output (cont.)

Normal
Operation

Fault



Example Classifier Output (cont.)

Fault
Likely

Fault



Example Classifier Output (cont.)

Fault 
Highly
Likely

Fault



Threshold & ROC
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performance, reflected as different points 
on the ROC curve
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Results
Fantastic classifier performance! AUC 0.99 



But real-world class imbalance requires higher performance… 

Results
Fantastic classifier performance! AUC 0.99 



Recall: $75k/incident
• At most $8076/false alarm @ 0.5 hit rate
• At most $18,750/false alarm @ 0.21

7 Faults Avoided   
65 False Alarms

3 Faults Avoided   
12 False Alarms

Economic Analysis

Presenter Notes
Presentation Notes
Using this prognosis system, to anticipate and avoid half of the faults that occurred (seven) in the dataset, 65 false alarms must be tolerated. If this fault incurs a turn-back, the total savings made by avoiding seven faults is $525,000; thus, if the cost of a false alarm is less than $8,076 each, it is worthwhile to use that threshold. Similarly, if the threshold is set such that three faults can be avoided, $225,000 can be saved with 12 false alarms, so if the cost of avoiding the fault is less than $18,750, it is worthwhile. 




Take Aways
What does this example suggest?

1. The AUC statistic is not very meaningful for imbalanced data 
sets (i.e., most PHM data sets)

2. Because we make so many evaluations, and there are so few 
faults, we really only care about the extreme far left portion of 
the ROC curve. 



A Close Look 
at ROC and 

Precision-Recall Curves



Recall, the Confusion Matrix
• A binary classifier produces output between 

a minimum and maximum value. 
• When you pick a classification threshold:

• cases >= threshold are classified as “positive”
• cases < threshold are “negative”

https://en.wikipedia.org/wiki/Confusion_matrix



Basic Evaluation Measures From a Confusion Matrix

Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC 
plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3), e0118432.



Precision & Recall
Positive Class

Predicted 
Positive

What fraction “classified positive” 
are True Positives; i.e., of the 
alarms, how many are faulty?

What fraction “positive class” are 
True Positives; i.e., of the faults, 

how many of them are identified?

https://en.wikipedia.org/wiki/Precision_and_recall#/media/File:Precisionrecall.svg



Calculating ROC, Balanced Data



Calculating ROC, Balanced Data

R code for all of these animations was kindly shared by Dariya Sydykova and is available here: 
https://github.com/dariyasydykova/open_projects/tree/master/ROC_animation



Calculating ROC, Balanced Data
• Same standard deviation, different means



Calculating ROC, Balanced Data
• Same standard deviation, different means



Calculating ROC, Balanced Data
• Same standard deviation, different means



Calculating ROC, Balanced Data
• Same standard deviation, different means



Calculating ROC & PR, Balanced Data
• Same standard deviation, different means

Presenter Notes
Presentation Notes
Note that because the denominator of precision has the negative class in it, it has a lower bound, in this case, about .5



Calculating ROC & PR, Balanced Data
• Different standard deviation, fixed means

Presenter Notes
Presentation Notes
Cliff is caused by positive class shrinking in numerator. 



Calculating ROC & PR, Imbalanced Data
• Same standard deviation, fixed means, changing positive class

Presenter Notes
Presentation Notes
Note that because the denominator of precision has the POSITIVE class in it, it has a lower bound, iand can go to nearly 0. So deceptive!



Calculating ROC & PR, Imbalanced Data
• Same standard deviation, fixed means, changing NEGATIVE class

Presenter Notes
Presentation Notes
Note that because the denominator of precision has the NEGATIVE class in it, it has a lower bound, iand can go to nearly 0. NOT A TYPICAL PHM PROBLEM



Conclusions
• Optimization of the ROC curve tends to maximize the correctly 

classified positive values (TP, which are present in the numerator of 
the true positive rate formula), and the correctly 
classified negative values (TN, which are present in the denominator 
of the false alarm rate formula).

• Meanwhile, the optimization of the PR curve tends to maximize the 
correctly classified positive values (TP, which are present both in 
the precision and in the recall formula), and does not consider 
directly the correctly classified negative values (TN, which is absent 
both from the precision and in the recall formula). 



Conclusions (cont.)

• In PHM, we often have very sparse dataset with 
many negative instances (normal operation) and 
few positive instances (faults). Therefore, we prefer to avoid the 
involvement of true negatives in our prediction score. 

• For these reasons, the Precision-Recall curve is a more reliable and 
informative indicator of statistical performance than the receiver 
operating characteristic curve for PHM datasets.



Additional Ideas
• For presenting to the customer, often it makes sense to just 

describe performance in terms of raw counts; e.g., in the last nine 
months, there were 21 faults detected 

• While you want to collect as much data as possible, you only want to 
evaluate data at meaningful intervals. Otherwise, you unnecessarily 
increase the probability of false alarm.

• For example, you might sample an asset every hour, but if it takes eight 
weeks to go from detection to failure, it might make sense to only evaluate 
the data you have collected once per day. If the probability of a false alarm 
is 0.0001, then in one month:

• Evaluating every day, probability of false alarm is 0.003: 1-(1-0.0001)^30
• Evaluating every hour, probability of false alarm is 23 times greater, 0.069:

1-(1-0.0001)^720



If you are interested in this topic, this paper is an outstanding 
reference:

Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more 
informative than the ROC plot when evaluating binary classifiers on 
imbalanced datasets. PloS one, 10(3), e0118432

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118432
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